Construction of Multiporphyrin Arrays via Selective Cross-Metathesis

Steven J. Langford,* Melissa J. Latter, and Clint P. Woodward

*School of Chemistry, Monash Uni*V*eristy, Clayton, Victoria 3800, Australia ste*V*en.langford@sci.monash.edu.au*

Received April 10, 2006

ORGANIC LETTERS 2006 Vol. 8, No. 12 ²⁵⁹⁵-**²⁵⁹⁸**

ABSTRACT

Selective cross-metathesis of type I and type II meso-functionalized porphyrin olefins afforded alkenyl-coupled dimeric and trimeric porphyrin systems in good yield with excellent E/Z selectivity. The synthetic utility of the method is demonstrated through the preparation of mixed metalated $(M = 2H, Zn)$ porphyrin dimer and trimer.

The linking of porphyrin chromophores by covalent bonds in a simple and systematic way to form stable, multiporphyrin architectures and well-defined arrays is important for creating novel molecular wires, light-harvesting systems, energy transduction devices, and catalytic scaffolds and in molecular recognition applications.1 Many successful porphyrin-toporphyrin coupling techniques have been developed, 2 yet alternative methods suitable for forming regiospecifically mixed metal systems and systems containing sensitive pendant functional groups are still sought. The olefin cross-

10.1021/ol060867n CCC: \$33.50 © 2006 American Chemical Society **Published on Web 05/10/2006**

metathesis (CM) reaction has developed into an extremely useful coupling technique due to its mild reaction conditions and exceptional tolerance toward a variety of functional groups. Recently, metathesis conditions have been utilized in porphyrin modifications³ and the covalent capture of supramolecular assemblies using Grubbs' first- or secondgeneration catalyst.4 To the best of our knowledge, in all of the supramolecular examples the CM was performed using a homocoupling strategy. Targeting mixed-olefin CM products should improve selectivity and specificity, allowing greater functional flexibility to the synthesis and better

^{*} Corresponding author. Tel: ⁺61 3 9905 4569. Fax: ⁺61 3 9905 4597. control of the products formed by virtue of the different (1) Some recent topical reviews include: (a) Imahori, H. *J. Phys. Chem. B* **2004**, *108*, 6130. (b) Drain, C. M.; Hupp, J. T.; Suslick, K. S.; Wasielewski, M. R. *J. Porph. Phthal.* **2002**, *6*, 243. (c) Imahori, H. *Org. Biomol. Chem.* **2004**, *2*, 1425. (d) Satake, A.; Kobuke, Y. *Tetrahedron* **2005**, *61*, 13.

^{(2) (}a) Burrell, A. K.; Officer, D. L.; Plieger, P. G.; Reid, D. C. W. *Chem. Re*V*.* **²⁰⁰¹**, *¹*01, 2751 and references therein. (b) Frampton, M. J.; Akdas, H.; Cowley, A. R.; Rogers, J. E.; Slagle, J. E.; Fleitz, P. A.; Drobizhev, M.; Rebane, A.; Anderson, H. L. *Org. Lett*. **2005**, *7*, 5365. (c) Arnold D. P. *Synlett* **2000**, 296.

⁽³⁾ Liu, X.; Sternberg, E.; Dolphin, D. *Chem. Commun.* **2004**, *5*7, 852.

^{(4) (}a) Kim, Y.; Mayer, M. F.; Zimmerman, S. C. *Angew. Chem., Int. Ed.* **2003**, *42*, 1121. (b) van Gerven, P. C. M.; Johannes, J. A. A. W.; Gerritsen, J. W.; Speller, S.; Nolte, R. J. M.; Rowan, A. E. *Chem. Commun.* **2005**, 28, 3535. (c) Ikeda, C.; Satake, A.; Kobuke, Y. *Org. Lett.* **2003**, *5*, 4935. (d) Cao, Y.; Wang, L.; Bolt, M.; Vysotsky, M. O.; Bohmer, V. *Chem. Commun.* **2005**, *58*, 3132. (e) Guidry, E. N.; Cantrill, S. J.; Stoddart, J. F.; Grubbs, R. H. *Org. Lett.* **2005**, *7*, 2129. (f) Bakker, J. M.; Langford, S. J.; Latter, M. J.; Lee, K. A.; Woodward, C. P. *Aust. J. Chem.* **2005,** *5*8, 757.

Figure 1. Schematic representation of the CM reaction involving type I and type II olefins.

kinetics associated with type I and type II olefins.⁵ In a reaction mixture containing type I and type II olefins (Figure 1), two type I olefins readily homodimerize under metathesis conditions. The olefinic product of this reaction can undergo a subsequent CM with the type II olefin to yield an unreactive heterodimer with good selectivity and yield.⁶ Homodimerization of type II olefins is slow and does not compete favorably with k_1 or k_2 . Here, we demonstrate the use of olefin CM reactions for generating multiporphyrin systems⁷ and demonstrate its versatility by synthesizing the dimer **1** and trimer **2** bearing mixed-metal (free-base and Zn(II)) species.

Porphyrin **3** containing a type I olefin was purified from a statistical mix using the Adler method, δ condensing 4 equiv of pyrrole with a 2.5:1.5 ratio⁹ of *p*-methoxybenzaldehyde and *p*-butenylbenzaldehyde in acidic media. The zinc(II) adduct **4** was prepared via the acetate metalation method in near-quantitative yield.10 We began our investigation by conducting a model involving porphyrin **3** and the acryloyl olefins **5** and **6**. Using 10 mol % loading of catalyst **7** (Grubbs' second-generation catalyst), we were able to prepare the porphyrins **8** and **9** in 36 and 54% yield, respectively (Scheme 1).¹¹ The E/Z selectivity of the reaction was heavily biased toward the *Z*-isomer, with only trace amounts of the sterically less favored *E*-isomer identified. With the models in hand, the metalloporphyrin **4** was reacted under similar conditions (20 mol % loading of catalyst **7**, 24 h) with the free-base acrylate porphryin **10**¹² in a 1:2 ratio to bias the products toward the mixed species **1** (Scheme 1).13 The reaction proceeded well as after 24 h all of **4** had been comsumed and a new, major band was detected from TLC monitoring. The heterodimer 1 was isolated in a 43% yield¹⁴ after column chromatography and characterized by highresolution ¹H and ¹³C NMR spectroscopy as well as MALDI-TOF mass spectrometry (see the Supporting Information). Under this CM strategy, the dimer **1** is able to be further metalated**/**transmetalated utilizing the lability of the Zn(II) metalloporphyrin without the statistical complications as-

2596 Org. Lett., Vol. 8, No. 12, **2006**

sociated with the bis-free-base analogue of **1**. Catalytic hydrogenation of the alkene $1 (H₂/Pd/C/THF/48 h)$ gave the bisporphyrin 11 in 96% yield (Scheme 1),¹⁵ as evinced by the loss of alkenyl resonances and formation of upfield triplets within the ¹ H NMR spectrum of **11**. 16

Cross-metathesis of the 5,15-dialkenylporphyrin **13** bearing type I olefins, prepared by Zn(II) metalation of **12**, ¹⁷ with the type II-containing olefin **10** (4 equiv), was achieved in 48% yield using a stoichiometric amount of **7** (Scheme 1).18 The trimer product **2** comprising a central dibutenylzinc porphyrin **13** capped by two free base acrylate porphyrins 10 was characterized by ¹H and ¹³C NMR spectroscopies and MALDI TOF mass spectrometry $(m/z = 2477.9 \text{ [M}^+])$. A comparison of the ¹ H NMR spectra of **10**, **13**, and **2**

⁽⁵⁾ This is especially important in regioselective mixed metalloporphyrins systems, which are otherwised formed through statistical metalations postmultiporphyrin synthesis.

⁽⁶⁾ Chatterjee, A. K.; Choi, T.-L.; Sanders, D. P.; Grubbs, R. H. *J. Am. Chem. Soc.* **2003**, *1*25, 11360.

⁽⁷⁾ This procedure has obvious uses with other olefins. For example, we have reacted **3** with allylglycine, which acts like a type-II olefin, to form a porphyrin α -amino acid in good yield. Conversely, we have reacted type-I olefins such as resin-bound undecenoate esters with protoporphyrin IX, which in our hands acts as a type-III olefin. These results and their applications will be published at a later date.

⁽⁸⁾ Adler, A. D.; Longo, F. R.; Finarelli, J. D.; Goldmacher, J.; Assour, J.; Korsakoff, L. *J. Org. Chem.* **1967**, *32*, 476.

⁽⁹⁾ Mainly tetra(*p*-methoxyphenyl)porphyrin and only a small amount of the desired monobutenyl porphyrin **2** was isolated using a 3:1 aldehyde ratio due to the greater reactivity of the *p*-methoxybenzaldehyde under the conditions used.

⁽¹⁰⁾ Buchler, J. W. In *The Porphyrins*; Dolphin, D., Ed.; Academic Press: New York, 1978; Vol. 1A, p 389.

⁽¹¹⁾ The lower yield observed for carboxylic acids over esters in CM has been recently discussed; see: Elaridi, J.; Jackson, W. R.; Robinson, A. J. *Tetrahedron: Asymmetry* **2005**, *1*6, 2025.

⁽¹²⁾ The acrylate porphyrin **10** was produced in 84% yield by reaction of an acrylate ester and 5,10,15-tris(*p*-tolyl)-20-(*p*-hydroxyphenyl)porphyrin. See: Nowakowska, M.; Karewicz, A.; Loukine, N.; Guillet, J. E. *Polymer* **2002**, *4*3, 2003.

⁽¹³⁾ The alternative synthesis of **1** employing an esterification procedure by reacting **5** or **6** and 5,10,15-tris(*p*-tolyl)-20-(*p*-hydroxyphenyl)porphyrin leads to in situ demetalation of the metalloporphyrin.

⁽¹⁴⁾ The reduced yields are thought to result from the formation of a coordination product between catalyst **7** and porphyrin **4**.

⁽¹⁵⁾ Previous reports on the reduction of alkyne porphyrins utilized palladium on carbon in THF with good effect; see: Bampos, N.; Marvaud, V.; Sanders, J. K. M. *Chem. Eur. J.* **1998**, *4*, 335.

⁽¹⁶⁾ The success of the hydrogenation is important in instances where both geometric isomers are formed by CM. While not yet attempted, this last result opens up the possiblity of performing a CM/hydrogenation tandem reaction to produce flexibly linked porphyrin systems in one pot.

⁽¹⁷⁾ The synthesis of **12** was recently reported by us; see ref 4f. We have since been able to grow crystals of **12** suitable for X-ray structural determination by slow diffusion of MeOH into a CHCl₃ solution of **12**. Crystal data for **12**: C₇₂H₉₈N₄, $M = 1019.54$, crystal dimensions 0.60 \times Crystal data for **12**: C₇₂H₉₈N₄, $M = 1019.54$, crystal dimensions $0.60 \times 0.08 \times 0.05$ mm³, $a = 8.675(6)$ Å, $b = 9.849(10)$ Å, $c = 19.648(16)$ Å, $\alpha = 97.46(4)$ ° $\beta = 96.67(3)$ ° $\nu = 100.67(4)$ ° triclinic *P*-1 Z $= 97.46(4)$ °, $\beta = 96.67(3)$ °, $\gamma = 100.67(4)$ °, triclinic *P*₋1, $Z = 1$, $V =$ $1619(2)$ Å³, $D_c = 1.046$ g/cm³, $F_{000} = 558$, $\lambda = 0.71073$ Å, $T = 123(2)$ K, $\mu = 0.060$ mm⁻¹, Nonius Kappa CCD diffractometer, ϕ scan data, 11123 data collected, corrected for Lorenz and polarization effects, 4557 unique $(R_{int} = 0.1261)$ and 2886 observed $[I > 2\sigma(I)]$, 471 refined parameters, *R* $= 0.0851$, $R_w = 0.2339$, $w = (\sigma^2(F))^{-1}$. Crystallographic data for the structure analyses have been deposited with the Cambridge Crystallographic Data Centre, CCDC 603983 for structure of **12**. Copies of this information may be obtained free of charge from The Director, CCDC, 12 Union Road, Cambridge, CB21EZ, UK (fax: +44-1223-336-033; e-mail: deposit@ccdc.cam.ac.uk or http://www.ccdc.cam.ac.uk).

⁽¹⁸⁾ The formation of oligomers of **13** is possibile and no doubt contributes to the reduced yield obtained. For a previous study in this regard, see ref 4b.

(Figure 2) provides clear evidence for formation of the trimer as well as to the *E*/*Z* selectivity of the CM reaction. Of most significance is the disappearance of the olefinic proton resonances of porphyrins **10** and **13** (Figure 2a and b, respectively) and only equal intensity resonances assignable to the *two* internal *Z* olefin protons of **2** seen at approximately *δ* 6.4 and 7.6 (hidden) in Figure 2c, indicating that both terminal alkenes of **13** had reacted with the acrylate unit of **10**. In addition to this, the remaining proton resonances $(\beta - \beta)$ pyrrolic and inner periphery protons of **10**, *meso-*protons of **13**, *meso*-aromatic and alkyl protons of **10** and **13**) are all present in the spectrum of **2** at chemical shifts similar to their respective isolated spectra and of correct integration.

In conclusion, we have shown that the CM reaction is suitable as a construction protocol for porphyrinic arrays which exhibit a high degree of *E*/*Z* selectivity in the products. Removal of the alkene linkage has also been shown to be possible by catalytic hydrogenation in the case of **1**. The

application of this synthesis strategy to more elaborate arrays is an active research area within our laboratory, and further results will be reported in due course.

Acknowledgment. This work was supported by the Australian Research Council through the Discovery Grant Scheme (DP0556313). We thank Dr. P. Jensen (Monash University Crystallography Facility) for his help in solving the X-ray structure of **12**. C.P.W. also acknowledges a Dean's Postgraduate Scholarship, Faculty of Science, Monash University.

Supporting Information Available: Synthetic procedures for compounds for all new compounds and X-ray data for **12**. This material is available free of charge via the Internet at http://pubs.acs.org.

OL060867N